Algorithms for the Generation of Daubechies Orthogonal Least Asymmetric Wavelets and the Computation of their Holder Regularity
نویسنده
چکیده
Explicit algorithms are presented for the generation of Daubechies compact orthogonal least asymmetric wavelet filter coefficients and the computation of their Holder regularity. The algorithms yield results for any number N of vanishing moments for the wavelets. These results extend beyond order N = 10 those produced by Daubechies for the values of the filter coefficients and those produced by Rioul for the values of their Holder regularity. Moreover, they reveal that the choice of phase for the filters published by Daubechies for orders N = 4 to N = 10 was not made consistently. In particular, her filter coefficients for orders N = 7 to N = 9 should be reflected to their mirror image sequence.
منابع مشابه
Computational Algorithms for Daubechies Least-Asymmetric, Symmetric, and Most-Symmetric Wavelets
Computational algorithms have been developed for generating min-length max-flat FIR filter coefficients for orthogonal and biorthogonal wavelets with varying degrees of asymmetry or symmetry. These algorithms are based on spectral factorization of the Daubechies polynomial with a combinatorial search of root sets selected by a desired optimization criterion. Daubechies filter families were syst...
متن کاملConstraint-Selected and Search-Optimized Families of Daubechies Wavelet Filters Computable by Spectral Factorization
A unifying algorithm has been developed to systematize the collection of compact Daubechies wavelets computable by spectral factorization of a symmetric positive polynomial. This collection comprises all classes of real and complex orthogonal and biorthogonal wavelet filters with maximal flatness for their minimal length. The main algorithm incorporates spectral factorization of the Daubechies ...
متن کاملDisjoint Sets of Daubechies Polynomial Roots for Generating Wavelet Filters with Extremal Properties
A new set of wavelet filter families has been added to the systematized collection of Daubechies wavelets. This new set includes complex and real, orthogonal and biorthogonal, least and most disjoint families defined using constraints derived from the principle of separably disjoint root sets in the complex z-domain. All of the new families are considered to be constraint selected without a sea...
متن کاملLeast and most disjoint root sets for Daubechies wavelets
A new set of wavelet filter families has been added to the systematized collection of Daubechies wavelets. This new set includes complex and real, orthogonal and biorthogonal, least and most disjoint families defined using constraints derived from the principle of separably disjoint root sets in the complex z-domain. All of the new families are considered to be constraint selected without a sea...
متن کاملApplication of Daubechies wavelets for solving Kuramoto-Sivashinsky type equations
We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition. Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method. The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method.
متن کامل